Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami

نویسندگان

  • Volker Herzig
  • Maria Ikonomopoulou
  • Jennifer J. Smith
  • Sławomir Dziemborowicz
  • John Gilchrist
  • Lucia Kuhn-Nentwig
  • Fernanda Oliveira Rezende
  • Luciano Andrade Moreira
  • Graham M. Nicholson
  • Frank Bosmans
  • Glenn F. King
چکیده

The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1-S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of cDNA sequence encoding for a novel sodium channel -toxin from the Iranian scorpion Mesobuthus eupeus venom glands

The venoms of Buthidae scorpions are known to contain basic, single-chain protein -toxins consisting of 60-70 amino acid residues that are tightly cross-linked by four disulfide bridges. Total RNA was extracted from the venom glands of scorpion Mesobuthus eupeus collected from the Khuzestan province of Iran and then cDNA was synthesized with the modified oligo (dT) primer and extracted total R...

متن کامل

A novel family of insect-selective peptide neurotoxins targeting insect large-conductance calcium-activated K+ channels isolated from the venom of the theraphosid spider Eucratoscelus constrictus.

Spider venoms are actively being investigated as sources of novel insecticidal agents for biopesticide engineering. After screening 37 theraphosid spider venoms, a family of three new "short-loop" inhibitory cystine knot insecticidal toxins (κ-TRTX-Ec2a, κ-TRTX-Ec2b, and κ-TRTX-Ec2c) were isolated and characterized from the venom of the African tarantula Eucratoscelus constrictus. Whole-cell pa...

متن کامل

Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri

Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are ...

متن کامل

Molecular Characterization of a Three-disulfide Bridges Beta-like Neurotoxin from Androctonus crassicauda Scorpion Venom

Scorpion venom is the richest source of peptide toxins with high levels of specific interactions with different ion-channel membrane proteins. The present study involved the amplification and sequencing of a 310-bp cDNA fragment encoding a beta-like neurotoxin active on sodium ion-channel from the venom glands of scorpion Androctonus crassicauda belonging to the Buthidae family using r...

متن کامل

Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes.

We have isolated a cardiotoxin, denoted jingzhaotoxin-III (JZTX-III), from the venom of the Chinese spider Chilobrachys jingzhao. The toxin contains 36 residues stabilized by three intracellular disulfide bridges (I-IV, II-V, and III-VI), assigned by a chemical strategy of partial reduction and sequence analysis. Cloned and sequenced using 3'-rapid amplification of cDNA ends and 5'-rapid amplif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016